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Two-Higgs doublet model

2

Simple extension from the SM 
• SM + doublet scalar 

!
Rich phenomenology 

• B physics 
• muon g-2 
• effect to h(125) couplings 
• …

Many free parameters 
• assumptions are made to reduce 

the number of free parameters 
!
Three popular assumptions: 

(1) softly broken Z2 symmetry 
(2) CP invariance in Higgs potential 
(3) custodial symmetry in Higgs 

potential



（１）softly broken Z2 symmetry

(ex) Yukawa terms in the down quark sector

example: 
if Φ1 → +Φ1,  Φ2 → - Φ2, qL → +qL,  dR → - dR 

then  y1d = 0

• two Yukawa matrices in each sector (y1d , y2d) 
• 18 free parameters are added to each sector (compared to the SM) 
• flavor changing Higgs coupling exist (e.g. h-d-s)

+ yij
1d q̄iL �1 djR + yij

2d q̄iL �2 djR
+ (up sector) + (lepton sector)+ (h.c.)

+yij
1d q̄iL �1 djR + yij

2d q̄iL �2 djR

Z2 symmetry makes y1d = 0 or y2d = 0 [Glashow, Weinberg (ʼ77)]
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（２）CP invariance in Higgs potential
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2 Review of two-Higgs doublet models

In this section, we review the two-Higgs doublet model with the softly broken Z2 symmetry

widely discussed. We have two Higgs fields, Φ1 and Φ2, charged under SU(2)L×U(1)Y . In

general the Higgs potential at the renormalizable level is given as follows:

V = m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −

(
m2

3Φ
†
1Φ2 + (h.c.)

)

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

(
1

2
λ5(Φ

†
1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + (h.c.)

)
. (2.1)

Four parameters, m2
3, λ5, λ6, and λ7, can be complex, and they are CP violating. Now, we

impose a softly broken Z2 symmetry to the Higgs fields: (Φ1,Φ2) → (Φ1,−Φ2). The Z2

symmetry forbids λ6 and λ7 terms. The m2
3 term breaks the Z2 symmetry softly, but can

shift the scalar masses. Let us define the vacuum expectation values (VEVs) of the Higgs

fields as

⟨Φ1⟩ =
vd√
2
, ⟨Φ2⟩ =

vu√
2
, (2.2)

and then the relation with the Fermi constant is

v2u + v2d =
1√
2GF

≡ v2 ≃ (246 GeV)2. (2.3)

We also define β as follows:

cosβ =
vd
v
, sinβ =

vu
v
. (2.4)

We have eight degrees of freedom in the scalar fields and three of them are eaten by

the gauge bosons, and thus we have five physical states: two of them are CP-even states

(h, H0), one is a CP-odd state (A0), and the others are a pair of charged scalar (H±).

Their masses are given by the parameters in the Higgs potential. When the Z2 symmetry

is imposed, the charged and CP-odd Higgs masses satisfy

m2
A = M2 − λ5v

2, (2.5)

m2
H± = m2

A +
λ5 − λ4

2
v2, (2.6)

where

M2 =
m2

3

sinβ cosβ
. (2.7)

Here λ5 is assumed to be real.

There are four different assignments of the Z2 symmetry to fermions [21–23]. The

assignments and the model names are summarized in table 1. These assignments forbid

FCNCs involving neutral scalars. The physics in the each 2HDM has been widely studied,

although their origins of Z2 symmetries are unclear.

In 2HDMs, the constraint of the ρ parameter, or T parameter, is important. It depends

on the scalar masses andWWh-coupling (gWWh = κV gSMWWh). Since the LHC result implies
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complex parameters：m3 , λ5 , λ6 , λ7 

absent in Z2 symmetric model ：λ6 , λ7 
（m3 breaks Z2 symmetry softly)

CP is violated in general 
However, in many cases, CP invariance is assumed for simplicity



（３）Custodial symmetry

5

strong constraint from ρ parameter 
• BSM sector should respect SU(2)C custodial symmetry

If custodial SU(2)C symmetry is exact in 2HDM, 
then CP-odd and charged Higgs forms triplet, (A0, H+, H-).

SU(2)C is violated by the mass difference

(CP symmetry in the Higgs potential is assumed)

λ4 = λ5 are assumed to enhance SU(2)C

m2
A �m2

H± =
�4 � �5

2
v2



Origin of the three assumptions?

6

They are reasonable assumptions, but are there origin of them?

Our work 
• extend electroweak symmetry : SU(2)xU(1) → SU(2)xSU(2)xU(1) 
• 2HDM is a low energy effective description 
• the three assumptions are emerged from gauge symmetry 

!

Three assumptions: 
(1) softly broken Z2 symmetry 
(2) CP invariance in Higgs potential 
(3) custodial symmetry in Higgs potential



Model



Review: SM Higgs with matrix rep.
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[SU(2)L] =eiT
a✓a

L

[U(1)Y ] =eiT
3✓Y

[SU(2)R] =eiT
a✓a

R

H ! [SU(2)L]H[U(1)†Y ]

H ! [SU(2)L]H[SU(2)†R]

gauge sym.

global sym. in the potential

custodial sym. (θL = θR ≡ θV)

H ! [SU(2)V ]H[SU(2)†V ]

V (H) = µ2tr(H†H) + �tr(H†H)2

Higgs potential

SU(2)L U(1)Y
H

(moose notation)

H =12⇥2� + i⌧a⇡a =

✓
� + i⇡3 i

p
2⇡+

i
p
2⇡� � � i⇡3

◆



Model
SU(2)0 x SU(2)1 x U(1)2 → U(1)QED

9

SU(2) SU(2) U(1)
qL 2 1 1/6
uR 1 1 2/3
dR 1 1 -1/3
ℓL 2 1 -1/2
eR 1 1 -1
H3 2 1 1/2
H1 2 2 0
H2 1 2 1/2

SU(2)0 U(1)2
H3

SU(2)1

H1 H2

H1 ! [SU(2)0]H1[SU(2)
†
1]

H2 ! [SU(2)1]H2[U(1)
†
2]

H3 ! [SU(2)0]H2[U(1)
†
2]

gauge sym.

Hj =�j12⇥2 + i⌧a⇡a
j =

✓
�j + i⇡3

j i⇡+
j

i⇡�
j �j � i⇡3

j

◆

(�j and ⇡a
j are real, not complex.)



intuitive way to understand why 2HDM 

10

SU(2) U(1)H

U(1)QED

SM

SU(2)0 U(1)2
H3

SU(2)1

H1 H2

our setup

SU(2) U(1)2

v1 � v2, v3

2HDM



Higgs potential 

11

V (H1, H2, H3) =µ2
1tr(H

†
1H1) + µ2

2tr(H
†
2H2) + µ2

3tr(H
†
3H3)

+ tr(H†
3H1H2)

+ e�1

⇣
tr
⇣
H†

1H1

⌘⌘2
+ e�2

⇣
tr
⇣
H2H

†
2

⌘⌘2
+ e�3

⇣
tr
⇣
H3H

†
3

⌘⌘2

+ e�12tr
⇣
H†

1H1

⌘
tr
⇣
H†

2H2

⌘
+ e�23tr

⇣
H†

2H2

⌘
tr
⇣
H†

3H3

⌘
+ e�31tr

⇣
H†

3H3

⌘
tr
⇣
H†

1H1

⌘

building block 
• tr(H1

†H1) 
• tr(H2

†H2) 
• tr(H3

†H3) 
• tr(H3

†H1 H2)

note 
• tr(H3

†H1 H2) is real 
• κ is real

H1 ! [SU(2)0]H1[SU(2)
†
1]

H2 ! [SU(2)1]H2[SU(2)
†
2]

H3 ! [SU(2)0]H2[SU(2)
†
2]

(1) the potential has custodial symmetry

(2) no CP violation in the potential
(3) softly broken Z2 symmetry in the potential 

• symmetric (Hi → - Hi) 
• broken only by tr(H3

†H1 H2)



Summary



Summary

• Three popular assumptions in 2HDM 
★ softly broken Z2 symmetry 
★ CP invariance in Higgs potential 
★ custodial symmetry in Higgs potential 
!

• Extension of the electroweak gauge symmetry 
★ three assumptions are emerged from gauge symmetry

13

SU(2)0 U(1)2
H3

SU(2)1

H1 H2

v1 � v2, v3
SU(2) U(1)2



Backup
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Yukawa in 2HDM

15

type-I:                      qL H2 uR + qL H2 dR + lL H2 eR 

type-II:                               qL H2 uR + qL H1 dR + lL H1 eR 

type-X (lepton-specific) :    qL H2 uR + qL H2 dR + lL H1 eR 

type-Y (flipped) :                 qL H2 uR + qL H1 dR + lL H2 eR

4 types of models under the Z2 symmetry

qL H2 uR + qL H2 dR + lL H2 eR 

+ qL H1 uR + qL H1 dR + lL H1 eR 

If not Z2 symmetry  (type-III)



Yukawa interaction

16

SU(2) SU(2) U(1)
qL 2 1 1/6
uR 1 1 2/3
dR 1 1 -1/3
ℓL 2 1 -1/2
eR 1 1 -1
H3 2 1 1/2
H1 2 2 0
H2 1 2 1/2

SU(2)0 U(1)2
H3

SU(2)1

H1 H2

q̄LH3

✓
yu 0
0 yd

◆✓
uR

dR

◆
+ ¯̀

LH3

✓
0 0
0 yd

◆✓
0
eR

◆
+ (h.c.)

Yukawa interaction

• This emerges type-I 2HDM. 
• Need another Yukawa in. for 

other types of 2HDM



Yukawa interaction
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SU(2) SU(2) U(1)
qL 2 1 1/6
uR 1 1 2/3
dR 1 1 -1/3
ℓL 2 1 -1/2
eR 1 1 -1
H3 2 1 1/2
H1 2 2 0
H2 1 2 1/2

SU(2)0 U(1)2
H3

SU(2)1

H1 H2

additional Yukawa

1

⇤
q̄LH1H2

✓
y0u 0
0 y0d

◆✓
uR

dR

◆
+

1

⇤
¯̀
LH1H2

✓
0 0
0 y0e

◆✓
0
eR

◆
+ (h.c.)

How to get these dim.5 op?      
• introduce vector-like fermions 
• see-saw 
• details are discussed in the paper [TA, Omura ʼ16]

q̄LH3

✓
yu 0
0 yd

◆✓
uR

dR

◆
+ ¯̀

LH3

✓
0 0
0 yd

◆✓
0
eR

◆
+ (h.c.)

Yukawa interaction

• This emerges type-I 2HDM. 
• Need another Yukawa in. for 

other types of 2HDM



add vector-like fermions
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SU(2) SU(2) U(1)
qL 2 1 1/6
uR 1 1 2/3
dR 1 1 -1/3
ℓL 2 1 -1/2
eR 1 1 -1
H3 2 1 1/2
H1 2 2 0
H2 1 2 1/2
QL 1 2 1/6
QR 1 2 1/6
LL 1 2 -1/2
LR 1 2 -1/2

Yukawa interaction

additional Yukawa

seesaw by MQ and ML are large

type-III 

LY ukawa '� q̄LH3

✓
yu 0
0 yd

◆✓
uR

dR

◆
� ¯̀

LH3

✓
0 0
0 ye

◆✓
0
eR

◆

� q̄LH1H2

✓
YQ1M

�1
Q

✓
y2u 0
0 y2d

◆◆✓
uR

dR

◆

� ¯̀
LH1H2

✓
YL1M

�1
L

✓
0 0
0 y2e

◆◆✓
0
eR

◆

+ (h.c.)

LY ukawa =� q̄LH3

✓
yu 0
0 yd

◆✓
uR

dR

◆
� ¯̀

LH3

✓
0 0
0 ye

◆✓
0
eR

◆

� q̄LH1YQ1QR � Q̄RMQQL � Q̄LH2

✓
y2u 0
0 y2d

◆✓
uR

dR

◆

� ¯̀
LH1YL1LR � L̄RMLLL � L̄LH2

✓
0 0
0 y2e

◆✓
0
eR

◆

+ (h.c.)



How to type-II, -X, and -Y 2HDM

19

example: type-II 
• (up-type quark)    vs     (down-type quarks,  leptons) 
•  yd = 0,  ye = 0,  y2u = 0   are required

LY ukawa '� q̄LH3

✓
yu 0
0 yd

◆✓
uR

dR

◆
� ¯̀

LH3

✓
0 0
0 ye

◆✓
0
eR

◆

� q̄LH1H2

✓
YQ1M

�1
Q

✓
y2u 0
0 y2d

◆◆✓
uR

dR

◆

� ¯̀
LH1H2

✓
YL1M

�1
L

✓
0 0
0 y2e

◆◆✓
0
eR

◆

+ (h.c.)

Let us try to assign global U(1) symmetry to forbid unwanted couplings
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qL QL ℓL LL QR LR uR dR eR H1 H2 H3 S

U(1) 0 0 0 0 xu - xd xu - xd xu xd xd -xu +xd -xd -xu xu - xd

However, in our setup, there are charged and CP-odd
scalars as well as CP-even scalars. The existence of the
charged and CP-odd scalar bosons are a distinctive feature
of our model compared to other SU(2) models.

The models without H3 are strongly constrained from
the S=T parameters. It has been observed that such con-
straints get significantly weaker when the Standard Model
(SM) fermions are charged under SUð2Þ1, i.e., where SM
fermions are composite [35–39]. Such models, if they
exist, are subject to the constraints from searches for flavor
changing neutral current ðFCNCÞ=CP nonconservations.
In this paper, we take a more conservative approach that
the SM fermions are all elementary and there is a funda-
mental Higgs field that gives masses to fermions through
the Yukawa intereactions, so that the well-tested Cabibbo-
Kobayashi-Maskawa theory is not modified.

The Lagrangian is given as follows:

Lgauge¼$1

4

X3

a¼1

Wa
0!"W

a!"
0 $1

4

X3

a¼1

Wa
1!"W

a!"
1 $1

4
B!"B

!";

(1)

L Higgs ¼ trððD!H1ÞyD!H1Þ þ trððD!H2ÞyD!H2Þ
þ trððD!H3ÞyD!H3Þ $ VðH1; H2; H3Þ; (2)

Lmatter ¼
X

i

ð !Qi
Li#

!D!Q
i
L þ !uiRi#

!D!u
i
R þ !diRi#

!D!d
i
R

þ !Lii#!D!L
i þ !eiRi#

!D!e
i
RÞ; (3)

LYukawa ¼ $
X

i;j

!Qi
LH3

yiju 0

0 yijd

 !
ujR

djR

0
@

1
A

$
X

i

!LiH3

0 0

0 yie

 !
0

eiR

 !
þ ðH:c:Þ; (4)

where i and j are generation indices. The Higgs fields are
given by2

H1 ¼ hH1iþ
1

2

!
h1 þ i

X3

a¼1

$a%a
1

"
; (5)

H2 ¼ hH2iþ
1

2

!
h2 þ i

X3

a¼1

$a%a
2

"
; (6)

H3 ¼ hH3iþ
1

2

!
h3 þ i

X3

a¼1

$a%a
3

"
; (7)

where $a denote the Pauli matrices, and Ta ¼ $a=2. Note
that we take the matrix notation for the Higgs fields. All the
Higgs fields are under the constraint

$2H&
i $

2 ¼ Hi; i ¼ 1; 2; 3: (8)

The Higgs potential, VðH1; H2; H3Þ, is
VðH1; H2; H3Þ

¼ !2
1 trðH1H

y
1 Þ þ!2

2 trðH2H
y
2 Þ þ!2

3 trðH3H
y
3 Þ (9)

þ & trðH1H2H
y
3 Þ (10)

þ '1ðtrðH1H
y
1 ÞÞ2 þ '2ðtrðH2H

y
2 ÞÞ2 þ '3ðtrðH3H

y
3 ÞÞ2

(11)

þ '12 trðH1H
y
1 Þ trðH2H

y
2 Þ þ '23 trðH2H

y
2 Þ trðH3H

y
3 Þ

þ '31 trðH3H
y
3 Þ trðH1H

y
1 Þ: (12)

Here all coefficients can be taken as real numbers. Note
that

ðtrðH1H2H
y
3 ÞÞ& ¼ trðH1H2H

y
3 Þ: (13)

We can also write the following term:

tr ðH1H2$
3Hy

3 Þ: (14)

This term can be eliminated by a field redefinition of H2.
3

Since the vacuum should respect Uð1Þem symmetry, the
Higgs VEVs, hH1i, hH2i, and hH3i, should be diagonal.
In addition, we can always take h%3

i i ¼ 0 by the gauge
transformations. So we work in a basis in which all the
Higgs VEVs are proportional to the identity matrix:

hH1i ¼
v1

2
; hH2i ¼

v2

2
; hH3i ¼

v3

2
; (15)

where v1, v2, and v3 are real and positive numbers. We
introduce v and r as

v2 ¼ v2
1v

2
2

v2
1 þ v2

2

þ v2
3; r ¼ v2

v1
: (16)

As we will discuss in Sec. IIIA, the relation between v and
the Fermi constant is the same as the one in the Standard
Model, v2 ¼ ð

ffiffiffi
2

p
GFÞ$1, so v' 246 GeV. The parameter

1$ v2
3=v

2 measures the size of the contribution to the
electroweak symmetry breaking from the dynamical sector.
The ratio r is an important parameter in later discussion. In
QCD-like technicolor theories, r ¼ 1 is predicted due to the
parity conservation. As we see later, the model with r ¼ 1 is
severely constrained by the electroweak precision tests.
The limits r ¼ 0 and r ! 1 are other special points

where parity (H1 $ H2) is maximally violating. Such
points can be the minimum of the potential when & ¼ 0,
where an axial U(1) symmetry, which is the one used to
eliminate the term in Eq. (14), is enhanced. For r ¼ 0 or
r ! 1, which means v2 ¼ 0 or v1 ¼ 0, the U(1) symme-
try remains unbroken, and thus there is no massless

2hi’s are proportional to 2 by 2 unit matrices though we do not
write them explicitly. 3A brief discussion is given in Appendix A.
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LY ukawa =� q̄LH3

✓
yu 0
0 yd

◆✓
uR

dR

◆
� ¯̀

LH3

✓
0 0
0 ye

◆✓
0
eR

◆

� q̄LH1YQ1QR � Q̄RSYQQL � Q̄LH2

✓
y2u 0
0 y2d

◆✓
uR

dR

◆

� ¯̀
LH1YL1LR � L̄RSYLLL � L̄LH2

✓
0 0
0 y2e

◆✓
0
eR

◆

+ (h.c.)

global U(1) symmetry can forbid unwanted couplings
(For other types, see our paper [TA, Omura ʼ16])
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qL QL ℓL LL QR LR uR dR eR H1 H2 H3 S

U(1) 0 0 0 0 xu - xd xu - xd xu xd xd -xu +xd -xd -xu xu - xd

However, in our setup, there are charged and CP-odd
scalars as well as CP-even scalars. The existence of the
charged and CP-odd scalar bosons are a distinctive feature
of our model compared to other SU(2) models.

The models without H3 are strongly constrained from
the S=T parameters. It has been observed that such con-
straints get significantly weaker when the Standard Model
(SM) fermions are charged under SUð2Þ1, i.e., where SM
fermions are composite [35–39]. Such models, if they
exist, are subject to the constraints from searches for flavor
changing neutral current ðFCNCÞ=CP nonconservations.
In this paper, we take a more conservative approach that
the SM fermions are all elementary and there is a funda-
mental Higgs field that gives masses to fermions through
the Yukawa intereactions, so that the well-tested Cabibbo-
Kobayashi-Maskawa theory is not modified.

The Lagrangian is given as follows:

Lgauge¼$1

4

X3

a¼1

Wa
0!"W

a!"
0 $1

4

X3

a¼1

Wa
1!"W

a!"
1 $1

4
B!"B

!";

(1)

L Higgs ¼ trððD!H1ÞyD!H1Þ þ trððD!H2ÞyD!H2Þ
þ trððD!H3ÞyD!H3Þ $ VðH1; H2; H3Þ; (2)

Lmatter ¼
X

i

ð !Qi
Li#

!D!Q
i
L þ !uiRi#

!D!u
i
R þ !diRi#

!D!d
i
R

þ !Lii#!D!L
i þ !eiRi#

!D!e
i
RÞ; (3)

LYukawa ¼ $
X

i;j

!Qi
LH3

yiju 0

0 yijd

 !
ujR

djR

0
@

1
A

$
X

i

!LiH3

0 0

0 yie

 !
0

eiR

 !
þ ðH:c:Þ; (4)

where i and j are generation indices. The Higgs fields are
given by2

H1 ¼ hH1iþ
1

2

!
h1 þ i

X3

a¼1

$a%a
1

"
; (5)

H2 ¼ hH2iþ
1

2

!
h2 þ i

X3

a¼1

$a%a
2

"
; (6)

H3 ¼ hH3iþ
1

2

!
h3 þ i

X3

a¼1

$a%a
3

"
; (7)

where $a denote the Pauli matrices, and Ta ¼ $a=2. Note
that we take the matrix notation for the Higgs fields. All the
Higgs fields are under the constraint

$2H&
i $

2 ¼ Hi; i ¼ 1; 2; 3: (8)

The Higgs potential, VðH1; H2; H3Þ, is
VðH1; H2; H3Þ

¼ !2
1 trðH1H

y
1 Þ þ!2

2 trðH2H
y
2 Þ þ!2

3 trðH3H
y
3 Þ (9)

þ & trðH1H2H
y
3 Þ (10)

þ '1ðtrðH1H
y
1 ÞÞ2 þ '2ðtrðH2H

y
2 ÞÞ2 þ '3ðtrðH3H

y
3 ÞÞ2

(11)

þ '12 trðH1H
y
1 Þ trðH2H

y
2 Þ þ '23 trðH2H

y
2 Þ trðH3H

y
3 Þ

þ '31 trðH3H
y
3 Þ trðH1H

y
1 Þ: (12)

Here all coefficients can be taken as real numbers. Note
that

ðtrðH1H2H
y
3 ÞÞ& ¼ trðH1H2H

y
3 Þ: (13)

We can also write the following term:

tr ðH1H2$
3Hy

3 Þ: (14)

This term can be eliminated by a field redefinition of H2.
3

Since the vacuum should respect Uð1Þem symmetry, the
Higgs VEVs, hH1i, hH2i, and hH3i, should be diagonal.
In addition, we can always take h%3

i i ¼ 0 by the gauge
transformations. So we work in a basis in which all the
Higgs VEVs are proportional to the identity matrix:

hH1i ¼
v1

2
; hH2i ¼

v2

2
; hH3i ¼

v3

2
; (15)

where v1, v2, and v3 are real and positive numbers. We
introduce v and r as

v2 ¼ v2
1v

2
2

v2
1 þ v2

2

þ v2
3; r ¼ v2

v1
: (16)

As we will discuss in Sec. IIIA, the relation between v and
the Fermi constant is the same as the one in the Standard
Model, v2 ¼ ð

ffiffiffi
2

p
GFÞ$1, so v' 246 GeV. The parameter

1$ v2
3=v

2 measures the size of the contribution to the
electroweak symmetry breaking from the dynamical sector.
The ratio r is an important parameter in later discussion. In
QCD-like technicolor theories, r ¼ 1 is predicted due to the
parity conservation. As we see later, the model with r ¼ 1 is
severely constrained by the electroweak precision tests.
The limits r ¼ 0 and r ! 1 are other special points

where parity (H1 $ H2) is maximally violating. Such
points can be the minimum of the potential when & ¼ 0,
where an axial U(1) symmetry, which is the one used to
eliminate the term in Eq. (14), is enhanced. For r ¼ 0 or
r ! 1, which means v2 ¼ 0 or v1 ¼ 0, the U(1) symme-
try remains unbroken, and thus there is no massless

2hi’s are proportional to 2 by 2 unit matrices though we do not
write them explicitly. 3A brief discussion is given in Appendix A.
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what we found

xu � xd

2

xu � xd

2

�xu � xd

2

xu � xd

2

q Q ℓ L Q L u d e H H H S

U(1) 0 0 0 0 xu xd xd -xd -xu

Another charge assignment

tr(H1H2H
†
3)S

⇤


