Emergent two-Higgs doublet models

Tomohiro Abe

Institute for Advanced Research Nagoya University, Kobayashi-Maskawa Institute

> work in collaboration with Yuji Omura (KMI)

based on JHEP 1608(2016)021 [arXiv:1606.06537]

The 6th KIAS Workshop on Particle Physics and Cosmology & the 2nd Durham-KEK-KIPMU-KIAS Joint Workshop

2016.10.24

Two-Higgs doublet model

Simple extension from the SM

• SM + doublet scalar

Rich phenomenology

- B physics
- muon g-2
- effect to h(125) couplings
- ···

Many free parameters

 assumptions are made to reduce the number of free parameters

Three popular assumptions:

- (1) softly broken Z₂ symmetry
- (2) CP invariance in Higgs potential
- (3) custodial symmetry in Higgs potential

(1) softly broken Z_2 symmetry

(ex) Yukawa terms in the down quark sector

$$+ \mathbf{y}_{1d}^{ij} \bar{q}_L^i \Phi_1 d_R^j + \mathbf{y}_{2d}^{ij} \bar{q}_L^i \Phi_2 d_R^j$$

+ (up sector) + (lepton sector) + (h.c.)

- two Yukawa matrices in each sector (y_{1d}, y_{2d})
- **18** free parameters are added to each sector (compared to the SM)
- flavor changing Higgs coupling exist (e.g. h-d-s)
- Z_2 symmetry makes $y_{1d} = 0$ or $y_{2d} = 0$ [Glashow, Weinberg ('77)]

example:

if
$$\Phi_1 \rightarrow +\Phi_1$$
, $\Phi_2 \rightarrow -\Phi_2$, $q_L \rightarrow +q_L$, $d_R \rightarrow -d_R$

then $\mathbf{y}_{1d} = 0$

$$+\mathbf{y}_{1d}^{ij} \,\bar{q}_{L}^{i} \,\Phi_{1} \,d_{R}^{j} + \mathbf{y}_{2d}^{ij} \,\bar{q}_{L}^{i} \,\Phi_{2} \,d_{R}^{j}$$

(2) CP invariance in Higgs potential

$$m_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - (m_{3}^{2}\Phi_{1}^{\dagger}\Phi_{2} + (h.c.))$$

$$+ \frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1})$$

$$+ (\lambda_{5}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + \lambda_{6}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2}) + \lambda_{7}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + (h.c.))$$

complex parameters : m_3 , λ_5 , λ_6 , λ_7

absent in Z₂ symmetric model : λ_6 , λ_7 (m₃ breaks Z₂ symmetry softly)

CP is violated in general However, in many cases, CP invariance is assumed for simplicity

(3) Custodial symmetry

strong constraint from ρ parameter

• BSM sector should respect SU(2)_C custodial symmetry

If custodial SU(2)_C symmetry is exact in 2HDM, then *CP-odd* and *charged Higgs* forms triplet, (A^0 , H^+ , H^-).

 $SU(2)_C$ is violated by **the mass difference**

$$m_A^2 - m_{H^\pm}^2 = rac{\lambda_4 - \lambda_5}{2} v^2$$
 (CP symmetry in the Higgs potential is assumed)

 $\lambda_4 = \lambda_5$ are assumed to enhance SU(2)_C

Origin of the three assumptions?

Three assumptions:

- (1) softly broken Z₂ symmetry
- (2) CP invariance in Higgs potential
- (3) custodial symmetry in Higgs potential

They are reasonable assumptions, but are there origin of them?

Our work

- extend electroweak symmetry : $SU(2)xU(1) \rightarrow SU(2)xSU(2)xU(1)$
- 2HDM is a low energy effective description
- the three assumptions are emerged from gauge symmetry

Model

Review: SM Higgs with matrix rep.

$$H = 1_{2 \times 2} \sigma + i\tau^a \pi^a = \begin{pmatrix} \sigma + i\pi^3 & i\sqrt{2}\pi^+ \\ i\sqrt{2}\pi^- & \sigma - i\pi^3 \end{pmatrix}$$

Higgs potential

$$V(H) = \mu^2 \operatorname{tr}(H^{\dagger}H) + \lambda \operatorname{tr}(H^{\dagger}H)^2$$

gauge sym. $H \rightarrow [\mathrm{SU}(2)_L] H[\mathrm{U}(1)_Y^{\dagger}]$

 $[\mathrm{SU}(2)_L] = e^{iT^a \theta_L^a}$ $[\mathrm{U}(1)_Y] = e^{iT^3 \theta_Y}$

global sym. in the potential

(moose notation)

 $H \rightarrow [\mathrm{SU}(2)_L] H[\mathrm{SU}(2)_R^{\dagger}]$

 $[\mathrm{SU}(2)_R] = e^{iT^a \theta_R^a}$

custodial sym. ($\theta_L = \theta_R \equiv \theta_V$)

 $H \rightarrow [\mathrm{SU}(2)_V] H[\mathrm{SU}(2)_V^{\dagger}]$

Model

$SU(2)_0 \ge SU(2)_1 \ge U(1)_2 \rightarrow U(1)_{QED}$

		-	
	SU(2)	SU(2)	U(1)
q_{\perp}	2	1	1/6
U R	1	1	2/3
d R	1	1	-1/3
l L	2	1	-1/2
E R	1	1	-1
Нз	2	1	1/2
H ₁	2	2	0
H ₂	1	2	1/2

gauge sym.

 $H_1 \rightarrow [\mathrm{SU}(2)_0] H_1 [\mathrm{SU}(2)_1^{\dagger}]$

 $H_2 \to [\mathrm{SU}(2)_1] H_2 [\mathrm{U}(1)_2^{\dagger}]$

 $H_3 \to [SU(2)_0] H_2[U(1)_2^{\dagger}]$

$$H_{j} = \sigma_{j} 1_{2 \times 2} + i\tau^{a} \pi_{j}^{a} = \begin{pmatrix} \sigma_{j} + i\pi_{j}^{3} & i\pi_{j}^{+} \\ i\pi_{j}^{-} & \sigma_{j} - i\pi_{j}^{3} \end{pmatrix}$$

(σ_{j} and π_{j}^{a} are real, not complex.)

intuitive way to understand why 2HDM

our setup

2HDM

Higgs potential

 $V(H_1, H_2, H_3) = \mu_1^2 \operatorname{tr}(H_1^{\dagger} H_1) + \mu_2^2 \operatorname{tr}(H_2^{\dagger} H_2) + \mu_3^2 \operatorname{tr}(H_3^{\dagger} H_3) + \kappa \operatorname{tr}(H_3^{\dagger} H_1 H_2)$

 $+ \widetilde{\lambda}_{1} \left(\operatorname{tr} \left(H_{1}^{\dagger} H_{1} \right) \right)^{2} + \widetilde{\lambda}_{2} \left(\operatorname{tr} \left(H_{2} H_{2}^{\dagger} \right) \right)^{2} + \widetilde{\lambda}_{3} \left(\operatorname{tr} \left(H_{3} H_{3}^{\dagger} \right) \right)^{2}$ $+ \widetilde{\lambda}_{12} \operatorname{tr} \left(H_{1}^{\dagger} H_{1} \right) \operatorname{tr} \left(H_{2}^{\dagger} H_{2} \right) + \widetilde{\lambda}_{23} \operatorname{tr} \left(H_{2}^{\dagger} H_{2} \right) \operatorname{tr} \left(H_{3}^{\dagger} H_{3} \right) + \widetilde{\lambda}_{31} \operatorname{tr} \left(H_{3}^{\dagger} H_{3} \right) \operatorname{tr} \left(H_{1}^{\dagger} H_{1} \right)$

building block

- $tr(H_1^+H_1)$
- $tr(H_2^+H_2)$
- $tr(H_3^+H_3)$
- $tr(H_3^{\dagger}H_1^{\dagger}H_2)$

note

- $tr(H_3^+H_1^-H_2)$ is real
- к is real

(1) the potential has **custodial symmetry**

$$H_1 \rightarrow [\mathrm{SU}(2)_0] H_1 [\mathrm{SU}(2)_1^{\dagger}]$$

 $H_2 \rightarrow [\mathrm{SU}(2)_1] H_2 [\mathrm{SU}(2)_2]$

$$H_3 \rightarrow [\mathrm{SU}(2)_0] H_2 [\mathrm{SU}(2)_2^{\dagger}]$$

(2) no CP violation in the potential

(3) **softly broken Z₂ symmetry** in the potential

- symmetric $(H_i \rightarrow H_i)$
- broken only by $tr(H_3^+H_1H_2)$

Summary

Summary

• Three popular assumptions in 2HDM

- \star softly broken Z₂ symmetry
- ★ CP invariance in Higgs potential
- ★ custodial symmetry in Higgs potential

• Extension of the electroweak gauge symmetry

★ three assumptions are emerged from gauge symmetry

Backup

Yukawa in 2HDM

4 types of models under the Z₂ symmetry

type-I:	$q_{L} H_{2} u_{R} + q_{L} H_{2} d_{R} + I_{L} H_{2} e_{R}$
type-II:	$q_L H_2 u_R + q_L H_1 d_R + I_L H_1 e_R$
type-X (lepton-specific) :	$q_{L} H_{2} u_{R} + q_{L} H_{2} d_{R} + I_{L} H_{1} e_{R}$
type-Y (flipped):	$q_{L} H_{2} u_{R} + q_{L} H_{1} d_{R} + I_{L} H_{2} e_{R}$

If not Z₂ symmetry (type-III)

 $q_{L} H_{2} u_{R} + q_{L} H_{2} d_{R} + I_{L} H_{2} e_{R}$ $+ q_{L} H_{1} u_{R} + q_{L} H_{1} d_{R} + I_{L} H_{1} e_{R}$

Yukawa interaction

	SU(2)	SU(2)	U(1)
q_{\perp}	2	1	1/6
U R	1	1	2/3
d R	1	1	-1/3
l L	2	1	-1/2
E R	1	1	-1
Нз	2	1	1/2
H1	2	2	0
H2	1	2	1/2

Yukawa interaction

$$\bar{q}_L H_3 \begin{pmatrix} y_u & 0 \\ 0 & y_d \end{pmatrix} \begin{pmatrix} u_R \\ d_R \end{pmatrix} + \bar{\ell}_L H_3 \begin{pmatrix} 0 & 0 \\ 0 & y_d \end{pmatrix} \begin{pmatrix} 0 \\ e_R \end{pmatrix} + (h.c.)$$

- This emerges type-I 2HDM.
- Need another Yukawa in. for other types of 2HDM

Yukawa interaction

	SU(2)	SU(2)	U(1)
q_{\perp}	2	1	1/6
U R	1	1	2/3
d R	1	1	-1/3
l L	2	1	-1/2
e r	1	1	-1
Нз	2	1	1/2
H ₁	2	2	0
H ₂	1	2	1/2

Yukawa interaction

$$\bar{q}_L H_3 \begin{pmatrix} y_u & 0 \\ 0 & y_d \end{pmatrix} \begin{pmatrix} u_R \\ d_R \end{pmatrix} + \bar{\ell}_L H_3 \begin{pmatrix} 0 & 0 \\ 0 & y_d \end{pmatrix} \begin{pmatrix} 0 \\ e_R \end{pmatrix} + (h.c.)$$

- This emerges type-I 2HDM.
- Need another Yukawa in. for other types of 2HDM

additional Yukawa

$$\frac{1}{\Lambda}\bar{q}_L H_1 H_2 \begin{pmatrix} y'_u & 0\\ 0 & y'_d \end{pmatrix} \begin{pmatrix} u_R\\ d_R \end{pmatrix} + \frac{1}{\Lambda}\bar{\ell}_L H_1 H_2 \begin{pmatrix} 0 & 0\\ 0 & y'_e \end{pmatrix} \begin{pmatrix} 0\\ e_R \end{pmatrix} + (h.c.)$$

How to get these dim.5 op?

- introduce vector-like fermions
- see-saw
- details are discussed in the paper [TA, Omura '16]

add vector-like fermions

	SU(2)	SU(2)	U(1)
q_{\perp}	2	1	1/6
U R	1	1	2/3
d R	1	1	-1/3
l L	2	1	-1/2
E R	1	1	-1
Нз	2	1	1/2
H_1	2	2	0
H ₂	1	2	1/2
QL	1	2	1/6
QR	1	2	1/6
L	1	2	-1/2
LR	1	2	-1/2

$$\mathcal{L}^{Yukawa} = -\bar{q}_{L}H_{3}\begin{pmatrix} y_{u} & 0\\ 0 & y_{d} \end{pmatrix} \begin{pmatrix} u_{R}\\ d_{R} \end{pmatrix} - \bar{\ell}_{L}H_{3}\begin{pmatrix} 0 & 0\\ 0 & y_{e} \end{pmatrix} \begin{pmatrix} 0\\ e_{R} \end{pmatrix}$$
$$-\bar{q}_{L}H_{1}Y_{Q1}Q_{R} - \bar{Q}_{R}M_{Q}Q_{L} - \bar{Q}_{L}H_{2}\begin{pmatrix} y_{2u} & 0\\ 0 & y_{2d} \end{pmatrix} \begin{pmatrix} u_{R}\\ d_{R} \end{pmatrix}$$
$$-\bar{\ell}_{L}H_{1}Y_{L1}L_{R} - \bar{L}_{R}M_{L}L_{L} - \bar{L}_{L}H_{2}\begin{pmatrix} 0 & 0\\ 0 & y_{2e} \end{pmatrix} \begin{pmatrix} 0\\ e_{R} \end{pmatrix}$$
$$+ (h.c.) \qquad \text{additional Yukawa}$$

Vukawa interaction

seesaw by M_Q and M_L are large

$$\begin{aligned} \mathcal{L}^{Yukawa} \simeq &- \bar{q}_L H_3 \begin{pmatrix} y_u & 0\\ 0 & y_d \end{pmatrix} \begin{pmatrix} u_R\\ d_R \end{pmatrix} - \bar{\ell}_L H_3 \begin{pmatrix} 0 & 0\\ 0 & y_e \end{pmatrix} \begin{pmatrix} 0\\ e_R \end{pmatrix} \\ &- \bar{q}_L H_1 H_2 \left(Y_{Q1} M_Q^{-1} \begin{pmatrix} y_{2u} & 0\\ 0 & y_{2d} \end{pmatrix} \right) \begin{pmatrix} u_R\\ d_R \end{pmatrix} \\ &- \bar{\ell}_L H_1 H_2 \left(Y_{L1} M_L^{-1} \begin{pmatrix} 0 & 0\\ 0 & y_{2e} \end{pmatrix} \right) \begin{pmatrix} 0\\ e_R \end{pmatrix} \\ &+ (h.c.) \end{aligned}$$

type-III

How to type-II, -X, and -Y 2HDM

example: type-II

- (up-type quark) vs (down-type quarks, leptons)
- $y_d = 0$, $y_e = 0$, $y_{2u} = 0$ are required

$$\begin{aligned} \mathcal{L}^{Yukawa} \simeq &- \bar{q}_L H_3 \begin{pmatrix} y_u & 0 \\ 0 & y_d \end{pmatrix} \begin{pmatrix} u_R \\ d_R \end{pmatrix} - \bar{\ell}_L H_3 \begin{pmatrix} 0 & 0 \\ 0 & y_e \end{pmatrix} \begin{pmatrix} 0 \\ e_R \end{pmatrix} \\ &- \bar{q}_L H_1 H_2 \left(Y_{Q1} M_Q^{-1} \begin{pmatrix} y_{2u} & 0 \\ 0 & y_{2d} \end{pmatrix} \right) \begin{pmatrix} u_R \\ d_R \end{pmatrix} \\ &- \bar{\ell}_L H_1 H_2 \left(Y_{L1} M_L^{-1} \begin{pmatrix} 0 & 0 \\ 0 & y_{2e} \end{pmatrix} \right) \begin{pmatrix} 0 \\ e_R \end{pmatrix} \\ &+ (h.c.) \end{aligned}$$

Let us try to assign global U(1) symmetry to forbid unwanted couplings

how to get type-II (cont.)

$$\begin{aligned} \mathcal{L}^{Yukawa} &= -\bar{q}_L H_3 \begin{pmatrix} y_u & 0 \\ 0 & y_d \end{pmatrix} \begin{pmatrix} u_R \\ d_R \end{pmatrix} - \bar{\ell}_L H_3 \begin{pmatrix} 0 & 0 \\ 0 & y_e \end{pmatrix} \begin{pmatrix} 0 \\ e_R \end{pmatrix} \\ &- \bar{q}_L H_1 Y_{Q1} Q_R - \bar{Q}_R S Y_Q Q_L - \bar{Q}_L H_2 \begin{pmatrix} y_{2u} & 0 \\ 0 & y_{2d} \end{pmatrix} \begin{pmatrix} u_R \\ d_R \end{pmatrix} \\ &- \bar{\ell}_L H_1 Y_{L1} L_R - \bar{L}_R S Y_L L_L - \bar{L}_L H_2 \begin{pmatrix} 0 & 0 \\ 0 & y_{2e} \end{pmatrix} \begin{pmatrix} 0 \\ e_R \end{pmatrix} \\ &+ (h.c.) \end{aligned}$$

	q٢	Q_{L}	l L	L	QR	Lr	U R	d R	E R	H ₁	H ₂	Нз	S
U(1)	0	0	0	0	Xu - Xd	X u - X d	Xu	X d	Xd	-Xu +Xd	-X d	-Xu	X u - X d

 $\kappa \operatorname{tr}(H_1 H_2 H_3^{\dagger})$

global U(1) symmetry can forbid unwanted couplings

(For other types, see our paper [TA, Omura '16])

Another U(I) charge assignment

what we found

	q∟	Q_L	l L	L	QR	Lr	U R	d R	E R	H ₁	H ₂	Нз	S
U(1)	0	0	0	0	Xu - Xd	Xu - Xd	Xu	Xd	Xd	-Xu +Xd	-X d	-Xu	Xu - Xd

 $\kappa \operatorname{tr}(H_1 H_2 H_3^{\dagger})$

Another charge assignment

	q	Q	l	L	Q	L	и	d	е	Н	Н	Н	S
U(1)	0	0	0	0	$\frac{\mathbf{x}_{u}-\mathbf{x}_{d}}{2}$	$\frac{\mathbf{x}_u - \mathbf{x}_d}{2}$	Xu	Xd	Xd	$-rac{\mathrm{x_u}-\mathrm{x_d}}{2}$	-X d	-Xu	$\left \frac{\mathbf{x}_{\mathbf{u}}-\mathbf{x}_{\mathbf{d}}}{2}\right $

 $\operatorname{tr}(H_1 H_2 H_3^{\dagger}) S^*$